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Diagnostic biomarkers can be used to determine relapse risk in
acute myeloid leukemia, and certain genetic aberrancies have
prognostic relevance. A diagnostic immunophenotypic expres-

sion profile, which quantifies the amounts of distinct gene products, not
just their presence or absence, was established in order to improve out-
come prediction for patients with acute myeloid leukemia. The
immunophenotypic expression profile, which defines each patient’s
leukemia as a location in 15-dimensional space, was generated for 769
patients enrolled in the Children’s Oncology Group AAML0531 proto-
col. Unsupervised hierarchical clustering grouped patients with similar
immunophenotypic expression profiles into eleven patient cohorts,
demonstrating high associations among phenotype, genotype, morphol-
ogy, and outcome. Of 95 patients with inv(16), 79% segregated in
Cluster A. Of 109 patients with t(8;21), 92% segregated in Clusters A
and B. Of 152 patients with 11q23 alterations, 78% segregated in
Clusters D, E, F, G, or H. For both inv(16) and 11q23 abnormalities, dif-
ferential phenotypic expression identified patient groups with different
survival characteristics (P<0.05). Clinical outcome analysis revealed that
Cluster B (predominantly t(8;21)) was associated with favorable out-
come (P<0.001) and Clusters E, G, H, and K were associated with
adverse outcomes (P<0.05). Multivariable regression analysis revealed
that Clusters E, G, H, and K were independently associated with worse
survival (P range <0.001 to 0.008). The Children’s Oncology Group
AAML0531 trial: clinicaltrials.gov Identifier: 00372593.   
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ABSTRACT

Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease affecting multiple lin-
eages of hematopoietic cells. The disease is classified by well-defined cytogenetic
or molecular abnormalities, and as one of eight broadly defined morphologic class-
es, each with a variety of immunophenotypic features.1 Such diverse assessment
modalities are difficult to compare, preventing a more comprehensive understand-
ing of the relationships between morphology, genotype, immunophenotype, and
outcome in patients with AML.
Conventional characterization of leukemic immunophenotypes used for lineage

assignment involves calculating the proportion of cells with antigen expression
above a defined threshold, but does not quantify the amount of each gene
product.2 We recently reported that antigen intensity relationships of normal
hematopoietic cell populations are invariant throughout maturation from an
uncommitted progenitor cell to a mature blood cell among both pediatric and adult
individuals.3,4 The study helped confirm that with a high degree of quality control



and system stability,3 precise quantification of surface
gene product expression can provide a robust basis to
assess phenotypic deviations from normal maturation pat-
terns that occur as a result of neoplastic transformation.5
This concept is supported by our recent report of the
recurrent multidimensional immunophenotype, RAM,
which independently identifies high-risk pediatric AML at
diagnosis.6 
In this study, we used the complete multidimensional,

quantitative leukemic immunophenotype [immunophe-
notypic expression profile (IEP)] to improve the assess-
ment of the heterogeneity seen in AML. In a study of 769
patients, those with similar global immunophenotypic
patterns were grouped together by unsupervised hierar-
chical clustering. This approach provided a focal point to
correlate continuous and categorical variables and deter-
mine the relationships among immunophenotype, geno-
type, morphology, and outcome in a sufficiently large
cohort of similarly treated patients. The integration of
testing modalities helps identify previously unrecognized
patients with poor clinical outcomes, and further clarifies
the relationship between a specific genetic event and its
effect on the expression of surface gene products. 

Methods

Patient samples 
Of 1022 newly diagnosed pediatric patients with de novo AML

enrolled on the Children's Oncology Group (COG) protocol
AAML0531, 769 satisfied three criteria for the study reported
herein: (1) submitting a bone marrow aspirate (N=626, 81%) or
peripheral blood specimen (N=143, 19%) (when bone marrow
was unavailable) for multidimensional flow cytometry (MDF) at
diagnosis, (2) providing consent for correlative biology studies,
and (3) MDF analysis showing leukemia comprising >10% of non-
erythroid cells. Patients with acute promyelocytic leukemia were
not enrolled in the AAML0531 study and those with Down syn-
drome were excluded from analysis. Details of the AAML0531
protocol have been previously published.7,8 Centrally reviewed
cytogenetic data and French–American–British (FAB) classification
were available for 97.5% and 86.2% of patients, respectively. The
study was approved by the institutional review board (IRB) at the
National Cancer Institute and IRBs at each of the 184 enrolling
centers. Patients and their families provided informed consent or
assent as appropriate. The trial was conducted in accordance with
the Declaration of Helsinki. 

Risk stratification 
AAML0531 defined diagnostic risk by cytogenetic or molecular

markers. Patients with monosomy 7, deletion 5q, monosomy 5, or
FLT3-ITD with a high allelic ratio (>0.4) were classified as high-
risk. Patients that had inv(16) (including t(16;16) variants), t(8;21),
a CEBPA mutation, or an NPM1 mutation were classified as low-
risk. All other patients with known cytogenetics were allocated to
the standard-risk group. Patients with persistence of disease, as
identified by morphologic assessment at the end of initial induc-
tion therapy, were also stratified to the high-risk group. 

Flow cytometric analysis
Bone marrow aspirates or peripheral blood samples were drawn

in heparin or ethylenediaminetetraacetic acid (EDTA) and submit-
ted for MDF assessment. For correlative biology studies, MDF was
performed centrally at Hematologics with a standardized panel of
monoclonal antibodies designed to detect measurable residual dis-

ease with a difference-from-normal approach.7 A comprehensive
flow cytometric work up was performed at the contributing insti-
tution, but was not reviewed centrally. Specimens were processed
as previously described.7

Hierarchical clustering 
Unsupervised hierarchical clustering of the 769 IEPs was per-

formed with R Studio. A dendrogram was constructed using a
Euclidian distance metric and a complete-linkage method without
scaling of the IEPs. Morphologic and genetic data were not includ-
ed in the clustering algorithm and did not influence the dendro-
gram. Selection of the number of phenotypic clusters was validat-
ed with the elbow method by comparing within- and between-
cluster variation (Online Supplementary Figure S1).9,10

Mutation screening 
Genomic DNA was extracted from diagnostic bone marrow

specimens by the Puregene® protocol (Gentra Systems, Inc.).
CEBPA, FLT3-ITD, WT1, and NPM1 mutations were screened as
previously described.11-14  Patients with inv(16) or t(8;21) were fur-
ther analyzed for coinciding c-KIT mutations. 

Morphologic assessment
The initial AML diagnosis was made at each contributing insti-

tution, and concurrence of the diagnostic morphologic assessment
was centrally reviewed. In the central review, subtypes were
assigned according to the FAB and World Health Organization
(WHO) 2001 classifications15 (Online Supplementary Table S1), as
the clinical trial began prior to the release of the 2008 WHO. 

Results

Phenotypic clustering
Diagnostic specimens from 769 patients enrolled in

AAML0531 were assessed for quantitative expression of
several cell surface markers using a standardized panel of
reagents (Figure 1A-D).7,8 The neoplastic cell population
from each specimen was identified by using CD45 versus
log right-angle light scatter (SSC) gating with WinList
(Verity Software House, Topsham, ME, USA), and was
subsequently verified with all combinations of reagents
(Figure 1E).  The log mean fluorescence intensities (MFI) of
12 cell surface antigens as well as the physical parameters
forward scatter (FSC) and log SSC were then determined
for the identified leukemic cell population. The coefficient
of variation (CV) of CD34 expression was also calculated
as an independent parameter for each patient’s leukemia,
since CD34 has been shown to provide a measure of mat-
uration for neoplastic cells.16,17 Together, these independ-
ently quantified characteristics defined the IEP for each
patient as a location in a 15-dimensional data space (Figure
1F,G).  Of note, the methodology of CD45 vs. SSC gating
in defining the IEP precludes analysis of the influence of
minor phenotypic (sub)clones on phenotype.  
Unsupervised hierarchical clustering was performed

using the calculated IEPs to segregate patients with similar
multidimensional phenotypes into related regions of a
dendrogram (Figure 2A). The relative intensities of each
antigen assessed were depicted in a blue-to-yellow color
gradient (extending over four log units) as a heatmap
(Figure 2B). Although the dataset consisted of a heteroge-
neous collection of 769 unique quantitative diagnostic
phenotypes, unsupervised clustering identified groups of
patients with similar IEPs. Computational analysis sug-
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gested that the dataset could be appropriately divided into
eleven distinct clusters (Online Supplementary Figure S1)
with similar IEPs (Clusters A–K, Figure 2A,B). Comparable
phenotypic heterogeneity was observed across specimen
types (peripheral blood and bone marrow). 

Association between phenotype and morphology
Although the current WHO classification of AML is

dependent on the molecular and genetic features of
leukemia,1 morphologic classification of AML describes
lineage and maturational features of the leukemic popula-
tion.18 To determine the relationship between morpholog-
ic subtype and immunophenotype, phenotypic clusters
were assessed for co-occurrence of FAB subtypes (Figure
2C, Online Supplementary Table S2).  Patients classified as
FAB-M0 or M1 (N=22 and N=90, respectively) were scat-
tered throughout the dendrogram and had no identifiable
groupings.  Patients classified as FAB-M2 (N=161) (blue)
segregated in two predominant regions of the dendrogram
within Clusters A and B. The majority of patients classi-
fied as FAB-M4 (N=165) (green) segregated near the top of
Cluster A. Patients classified as FAB-M5 (N=144) (yellow)
were identified in a large region of the dendrogram corre-
sponding to Clusters D, E, F, and G.  Nine patients classi-
fied as FAB-M6 did not segregate together.  Patients classi-
fied as FAB-M7 (N=30) predominantly segregated to
Clusters H and K. These findings suggest that some mor-
phologic groups share similar patterns of expression of
gene products. Furthermore, some FAB classes can be sub-
divided according to phenotypic differences.  

Association between phenotype and genotype
The underlying cytogenetic and mutational status of

each patient was appended to the dendrogram to analyze
the association between genotype and phenotype (Figure
2C). Clear relationships between IEPs and underlying
genotypes were identified, as many patients with the
same genetic abnormality segregated in similar regions of
the dendrogram. Each phenotypic cluster (A–K, Figure
2A,B) was analyzed for high-density regions of each
genetic abnormality (consisting of at least 9 patients). A
genotypic subcluster was assigned for each high-density
region identified (Subclusters A-i to K-i, Figure 2D and
Online Supplementary Table S3).   
The major chromosomal abnormalities were highly cor-

related with IEPs. Of the 95 patients with inv(16), 79%
were within Cluster A (Figure 2C). Subcluster analysis
revealed that 53% of all inv(16) patients were tightly clus-
tered within the A-ii region and 20% of all inv(16) patients
segregated to the A-v region of Cluster A (Figure 2C,D).
Patients with inv(16) made up 86% of  Subcluster A-ii and
35% of Subcluster A-v. Subclusters A-ii and A-v had sim-
ilar frequencies of patients with coinciding c-KIT muta-
tions (30% and 26%, respectively). Both subclusters were
associated with FAB M4 morphology (89% and 48%,
respectively). Patients in Subclusters A-ii and A-v had dis-
tinct multidimensional phenotypes (Online Supplementary
Figure S2). 
Of the 109 patients with t(8;21), 92% segregated in

Cluster A or B. Strikingly, 70% of the patients with t(8;21)
were identified in Subclusters A-iii and B-i (Figure 2C,D).

A. Voigt et al.

2060 haematologica | 2017; 102(12)

Figure 1. Overview of immunophenotypic expression profiling (IEP). (A) Diagnostic bone marrow specimens were acquired from each patient enrolled in the COG
protocol AAML0531. (B) Then, 200 μL of bone marrow was added to 6 tubes containing (C) Fluorescein Isothiocyanate (FITC)-, Phycoerythrin (PE)-, Peridinin
Chlorophyll Protein Complex  (PerCP)-, and anti-Allophycocyanin  (APC)-conjugated antibodies. (D) Flow cytometry was performed on samples in each tube, and fluo-
rescence measurements, forward light scatter (FSC) and right-angle light scatter (SSC) characteristics were collected for 200,000 events. (E) Flow cytometry results
were analyzed by an expert, and leukemic populations were identified by CD45 vs. SSC gating. (F) For cells identified in the leukemia gate, the mean intensity for
each parameter (black dot) was computed. Mean fluorescence intensity was utilized as an unaltered quantification of signal.  In addition, the coefficient of variation
(CV) of CD34 was computed as a metric to assess cellular maturation. (G) Collectively, these 15 quantitative intensities constituted the IEP for each patient. 
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Figure 2. Hierarchical clustering of IEPs. (A) A dendrogram was generated by unsupervised hierarchical clustering of the 769 IEPs. Eleven phenotypic clusters (A–
K), selected by minimizing within-cluster variation and maximizing between-cluster variation, were identified for outcome analysis.  (B) The IEP of each patient is pre-
sented in the form of a heatmap. (C) The morphologic, karyotypic, and mutational profiles of each patient were compared to the IEPs. (D) Genotypic (sub)clusters
with associations among IEPs and morphologic, karyotypic, and/or mutational abnormalities were identified for further analysis. (E) Key denoting intensity of the
surface gene product expression to color scale and mutational and morphologic classifications. Somatic mutations are denoted in red and those for wild-type
patients are denoted in gray. FAB classifications are indicated by color.



These two phenotypic groups are largely distinguished by
quantitative expression of CD56 (Online Supplementary
Figure S3). Subclusters A-iii and B-i predominantly includ-
ed patients with t(8;21) (85% and 83%, respectively).
Further, these subclusters were strongly associated with
FAB M2 morphology (79% and 80%, respectively).
Interestingly Subcluster A-v, which was associated with
inv(16), also included 17 patients with t(8;21) (all of which
were inv(16) negative). Of all patients with t(8;21), 16%
segregated into Subcluster A-v. 
The 152 patients with 11q23/MLL (KMT2A) alterations

had distinct IEPs. Overall, 78% of all 11q23 patients segre-
gated in Cluster D, E, F, G, or H. Within each cluster, a sub-
cluster was defined to further investigate the clinical and
biologic features of patients with MLL translocations. The
majority of patients in each subcluster harbored MLL
translocations (Subcluster D-i: 66%; Subcluster E-i: 67%;
Subcluster F-i: 57%; Subcluster G-i: 82%; and Subcluster
H-i: 53%), and each subcluster was strongly associated
with FAB M5 morphology (Subcluster D-i: 69%;
Subcluster E-i: 78%; Subcluster F-i: 63%; Subcluster G-i:
100%; and Subcluster H-i: 24%). The translocation part-
ners for 11q23 did not appear to be associated with phe-
notypic heterogeneity (Online Supplementary Figure S4).
MLL chromosomal rearrangements by abnormality (e.g.,
t(9;11) or t(11;19)) could not be subdivided further into
more specific immunophenotypic associations. 
Of the 17 patients with the CBFA2T3–GLIS2 chimeric

fusion gene transcript,19,20 59% were identified within
Cluster K. Conversely, 63% (10 of 16) of patients within
this cluster harbored CBFA2T3–GLIS2 fusions.  The IEPs
of these patients revealed remarkably consistent bright
expression of CD56, dim or negative expression of CD45
and CD38, and a lack of HLA-DR expression, which is
consistent with the previously reported RAM phenotype.6
Within this cluster, 54% of patients had FAB M7 morphol-
ogy.     
AML-associated somatic mutations also had a strong

association with immunophenotype.  Patients with
CEBPA mutations segregated in several small groups
throughout the dendrogram, most prominently in
Subcluster A-i and Subcluster C-i (Figure 2C,D). Of 46
patients with CEBPA mutations, 30% were identified

within A-i, and 24% were identified within Subcluster C-
i. CEBPA mutations occurred in 48% of patients in
Subcluster A-i and 21% of patients in Subcluster C-i.  

FLT3-ITD mutations were associated with 4 genotypic
subclusters, often in combination with other genetic
mutations. Overall, 61% of all patients with FLT3-ITD
mutations were identified in Subclusters A-iv, A-vi, C-i,
and C-ii. In Subcluster A-iv, 65% (11 of 17) of patients
with FLT3-ITD mutations also had a WT1 mutation,
therefore, 42% of all patients in the dataset had both
mutations. In Subcluster C-i, only 16% (4/25) of patients
with FLT3-ITD mutations also had a CEBPA mutation;
however this accounted for 44% of all patients that had
co-existing FLT3-ITD and CEBPAmutations. In Subcluster
C-ii, 50% (9 of 18) of patients with FLT3-ITD mutations
also had an NPM1 mutation, constituting 43% of all
patients in the dataset with both FLT3-ITD and NPM1
mutations. 

Associations among phenotype, genotype, and outcome
Kaplan–Meier analysis of outcomes was performed to

define the 5-year event-free survival (EFS) of patients in
different phenotypic clusters (Figure 3). The 5-year EFS of
patients in each individual cluster was compared to the
EFS of all other patients; statistically significant differences
were observed for patients in Clusters B, E, G, H, and K
(Table 1). Representations of phenotypes observed for
these clusters are shown in Online Supplementary Figures
S5-S9.
Univariable analysis revealed that 5-year EFS and overall

survival (OS) varied among patients in different IEP clus-
ters. Patients in Cluster B had more favorable 5-year EFS
and patients within Clusters E, G, H, and K had more
adverse OS and EFS than those in other clusters. Patients
in Cluster B (who predominantly had t(8;21)) had signifi-
cantly higher 5-year EFS (69%, CI: 57%–78%) than those
in other clusters (46%, CI: 43%–50%; P<0.001).
Interestingly, patients in Clusters E, G, H, and K had poor
5-year EFS (19%–39%; Table 1). After adjusting for age
and molecular/cytogenetic risk groups, multivariable
analysis revealed that patients in Clusters G, H, and K had
significantly higher hazard ratios (HRs) for EFS and OS,
whereas those in Cluster E had a significantly higher HR
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Table 1. Comparison of 5-year EFS (95%CI) of patients in individual phenotypic clusters with that of all other patients.
Cluster* EFS of patients in cluster of interest EFS of all other patients P

Cluster A (N=266) 51% (44%–56%) 48% (43%–52%) 0.257
Cluster B (N=77) 69% (57%–78%) 46% (43%–50%) <0.001
Cluster C (N=106) 50% (40%–69%) 48% (45%–52%) 0.803
Cluster D (N=68) 57% (44%–68%) 48% (44%–51%) 0.149
Cluster E (N=52) 39% (26%–52%) 49% (46%–53%) 0.041
Cluster F (N=28) 39% (22%–57%) 49% (45%–53%) 0.173
Cluster G (N=11) 27% (7%–54%) 49% (45%–53%) 0.027
Cluster H (N=81) 28% (18%–38%) 51% (47%–55%) <0.001
Cluster I (N=23) 52% (30%–70%) 49% (45%–52%) 0.583
Cluster J (N=41) 56% (40%–70%) 48% (44%–52%) 0.479
Cluster K (N=16) 19% (5%–40%) 49% (46%–53%) 0.006
*Statistically significant phenotypic clusters (in comparison with all other patients) are highlighted in blue. EFS: event-free survival; CI: confidence interval.



for OS, but not EFS (Table 2). Cluster B, with a high fre-
quency of t(8;21), showed no additional favorable effect
on EFS or OS. 
A similar outcome analysis was performed on genotypic

subclusters to determine whether the combination of phe-
notypic and genotypic features leads to a more accurate
prediction of patient outcomes than genotypic features
alone. Patients with inv(16) in Subclusters A-ii and A-v
had significantly different outcomes (Figure 4A), which
was not further explained by the frequency of correspon-
ding c-KIT mutations (30% vs. 26%, respectively). The 5-
year EFS for patients with inv(16) with a phenotype corre-
sponding to Subcluster A-v was significantly higher (84%,
CI: 57%–94%) than for those with a phenotype corre-
sponding to Subcluster A-ii (54%, CI: 39%–67%;
P=0.039). 
In further analysis of the role of c-KITmutations in core

binding factor (CBF) leukemias, CBF/c-KIT positive
patients (N=50) demonstrated no statistically significant
differences in EFS (P=0.105) or OS (P=0.192) than 
CBF/c-KIT negative patients (N=154).  In addition, three
clusters had sufficient (N>1) patients with CBF AML and
c-KIT mutations: Clusters A, B, and H. For each of these
clusters, the difference in EFS and OS was assessed
between CBF/c-KIT positive vs. CBF/c-KIT negative
patients. In Clusters B and H, there was no significant dif-
ference in OS or EFS between CBF/c-KIT positive and
CBF/c-KIT negative patients. Within Cluster A, CBF/c-KIT
positive patients (N=29) had a significantly worse 5-year
EFS than CBF/c-KIT negative patients (N=91) (50% +/-
19% vs. 71% +/- 10%, P=0.046). However, a difference in
outcome between CBF/c-KIT patients in Subcluster A-ii
vs. A-v was not observed for either OS (A-ii: 71.1%, A-v:
77.8%, P=0.915) or EFS (A-ii: 46.7%, A-v: 55.6%,
P=0.680).
The outcomes of patients with 11q23 abnormalities also

differed by phenotype. Patients with 11q23 within

Subcluster D-i or E-i, who were assigned to the standard-
risk group at diagnosis, had a higher 5-year EFS
(Subcluster D-i: 51%, CI: 36%–64%; Subcluster E-i: 42%,
CI: 26%–58%) than those in Subclusters F-i, G-i, or H-i
(Subcluster F-i: 25%, CI: 8%–47%; Subcluster G-i: 22%,
CI: 3%–51%; Subcluster H-i: 20%, CI: 3%–47%), though
this difference was not significant (P=0.063) likely due to
low sample size (Figure 4B). However, merging these clus-
ters on the basis of their relationships within the dendro-
gram revealed two distinct 5-year EFS outcomes
(Subclusters D-i+E-i: 47% vs. Subclusters F-i+G-i+H-i:
23%, P=0.006). The subclusters in which patients with
11q23 had poorer outcomes did not have a higher fre-
quency of MLL translocation partners associated with
higher risk in other pediatric studies of MLL rearrange-
ments.21,22 However, patients with t(9;11) were overrepre-
sented in Subcluster D-i. Therefore, while phenotype did
not further subset high-risk MLL rearrangements, it did
further identify patients with t(9;11). Similar outcome
comparison for patients with t(8;21) within Subclusters B-
i, A-iii, and A-v showed no significant difference in out-
come with 5-year EFS of  76% (CI: 64%-88%), 85% (CI:
69%-100%), and 58% (CI: 34%-82%), respectively
(P=0.152). Likewise, comparison of patients with 
FLT3-ITD within Subclusters A-iv, A-vi, C-i, and C-ii
revealed no significant difference in 5-year EFS.
A specific area of the dendrogram, which primarily

comprised Clusters H, I, and J, was void of high-density
genotypic subclusters. Although patients in these clusters
had several genetic abnormalities, none of the patients
with unifying abnormalities grouped together with the
combined density and frequency observed in other
regions of the dendrogram. The outcomes of patients in
Clusters I and J were unremarkable, the absence of
patients with inv(16) or  t(8;21) is, however, notable. 
Cluster H was marked by a large cohort size (N=81) and

poor patient outcomes. Of note, 86% of patients within
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Figure 3. Kaplan–Meier analysis of 5-year EFS of patients by phenotypic cluster. (A) Curves showing differences in EFS for patients in the 11 IEP clusters. (B) Curves
showing phenotypic clusters in which the 5-year EFS for patients was significantly different (P<0.05) from that of patients in other clusters. Although patients in
Clusters E and F had identical EFS, Cluster F EFS was not statistically significant due to low sample size. 
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Cluster H were classified in the low-risk or standard-risk
group on the basis of cytogenetic or molecular markers.
Strikingly, patients classified in the low-risk group by
cytogenetic or molecular markers within Cluster H (N=25)
had significantly poorer 5-year EFS (33%) and 5-year OS
(66%) than all other favorable-risk patients (N=265) in the
study (5-year EFS=72%, P<0.001; OS=84%, P=0.008;
Online Supplementary Figure S10A,B). Furthermore, Group
H predicts significantly worse EFS and OS for high-risk
patients, but only predicts significantly worse OS for stan-
dard-risk patients (Online Supplementary Figure S10C-F).

Supervised prediction of cluster and subcluster
cohorts
Unsupervised hierarchical clustering was employed to

discover a previously unknown structure in the dataset,
namely the relationship between immunophenotype,
genotype, and outcome. To apply these identified rela-
tionships to new patients, a supervised boosted decision
tree algorithm was constructed to replicate the original
unsupervised cluster classifications using only the IEP. The
769 patients were divided into training (N=513, 2/3) and
testing (N=256, 1/3) cohorts. This algorithm was applied
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Table 2. Univariable and multivariable Cox regression analysis of the phenotypic clusters cohorts by age and cytogenetic or molecular risk clas-
sification.

OS from study entry EFS from study entry
Univariable N HR 95% CI P HR 95% CI P

Cluster groups
All other clusters 532 1 1
Cluster H 81 2.08 1.50– 2.89 <0.001 1.81 1.36–2.41 <0.001
Cluster E 52 1.82 1.19–2.79 0.006 1.55 1.07–2.25 0.022
Cluster K 16 3.03 1.69–5.46 <0.001 2.29 1.31–3.99 0.004
Cluster G 11 3.03 1.42–6.47 0.004 2.34 1.16–4.73 0.018
Cluster B 77 0.72 0.45–1.16 0.178 0.56 0.37–0.85 0.007

Age (years)
3–10 231 1 1
0-2 174 1.15 0.82–1.61 0.640 1.23 0.93–1.63 0.142
≥11 364 1.27 0.95–1.68 0.102 1.12 0.89–1.42 0.336

Risk Group
Standard 360 1 1
Low 290 0.32 0.23–0.43 <0.001 0.38 0.29–0.48 <0.001
High 108 1.26 0.93–1.70 0.130 1.31 1.01–1.70 0.045
Karyotype by complexity
0-2 612 1 1
3+ 138 1.40 1.05-1.87 0.024 1.20 0.93-1.54 0.162
Multivariable
Cluster groups
All other clusters 519 1 1
Cluster H 77 2.09 1.48–2.94 <0.001 1.79 1.33–2.41 0.001
Cluster E 51 1.85 1.18–2.91 0.008 1.41 0.95–2.09 0.087
Cluster K 16 4.18 2.18–8.00 <0.001 2.35 1.29–4.27 0.005
Cluster G 11 3.64 1.65–8.05 0.001 2.32 1.12–4.83 0.024
Cluster B 76 1.20 0.73–1.98 0.480 0.87 0.56–1.35 0.539

Age (years)
3–10 227 1 1
0–2 173 0.72 0.49–1.07 0.103 0.88 0.64–1.21 0.428
≥11 358 1.51 1.13–2.02 0.005 1.27 1.00–1.62 0.051

Risk Group
Standard 360 1 1
Low 287 0.31 0.22–0.44 <0.001 0.40 0.30–0.52 <0.001
High 103 1.26 0.90–1.76 0.173 1.34 1.00–1.78 0.047
Karyotype by complexity
0-2 612 1 1
3+ 138 1.58 1.17-2.14 0.003 1.24 0.96-1.61 0.106

*Statistically significant hazard ratios with corresponding P values in bold type. OS: overall survival; EFS: event-free survival; HR: hazard ratio; CI: confidence interval.



to the test cohort, and accurately classified 84.0% of
patients within an eleven-class prediction setting (average
sensitivity =0.824, average specificity =0.982, average F1-
score =0.841). The sensitivity, specificity, and F1-score of
predictions for each cluster in the test cohort are detailed
in Online Supplementary Table S4. As patients with inv(16)
and 11q23 showed divergent clinical outcomes based on
subcluster designations, additional boosted tree-based
models were trained to identify inv(16) patients within
Subclusters A-ii and A-v and 11q23 patients within
Subcluster H-i. Subclusters D-i, E-i, F-i, and G-i completely
overlap with Clusters D, E, F, and G, hence no additional
boosted decision tree models were trained to identify
these subclusters. Patients with inv(16) were partitioned
into A-ii and A-v subclusters with an overall accuracy of
92.3% (average sensitivity =0.833, average specificity
=0.895, average F1-score =0.800). Patients with 11q23
were partitioned into D-i, E-i, F-i, G-i, and H-i with an
overall accuracy of 95.4% (average sensitivity =0.743,
average specificity =0.979, average F1-score =0.790).
Additional details and performance metrics of subcluster
models are provided in Online Supplementary Table S5. 
Each of the eleven clusters demonstrated a unique pat-

tern of dysregulated surface gene product expression. To
characterize these immunophenotypic patterns, boosted
decision tree models were trained to distinguish patients
in each cluster from all other patients using the IEP. The
relative influence of each IEP parameter in generating a
correct prediction was quantified, where a high relative
influence indicates that a given surface gene product is an
important component of a cluster’s immunophenotypic
expression pattern. As opposed to the evaluation of posi-
tive or negative expression of single antigens, the variable
importance quantifications highlight the multidimension-
al nature of surface gene product dysregulation that
defines each of the eleven clusters (Figure 5). This data is
depicted in Figure 5, where the six most important IEP
parameters for each cluster are displayed and each param-
eter is subsequently colored to illustrate the quantitative

amount of each antigen (or non-antigen variable for SSC
and FSC), as compared to the quantitative antigen expres-
sion of normal myeloid progenitor cells. For example, the
six most important IEP parameters for Cluster A are, in
order: CD34, CD56, CD13, HLA-DR, CD33, and CD117.
CD34 is the most important parameter and the relative
intensity of the antigen is essentially the same as that of
normal myeloid progenitor cells. CD56 is the second most
important parameter for Cluster A and has increased
expression of CD56 compared to normal myeloid progen-
itor cells (which lack the CD56 antigen). In comparison
CD34 is the most important parameter for Cluster J, but
due to lack of expression, not presence. 

Discussion

In this study, we present a novel approach for the diag-
nostic classification of AML that uses quantitative MDF-
based diagnostic classification of AML. This method gen-
erates a unique patient-specific profile, which, in combi-
nation with the diagnostic karyotype and/or somatic
mutations, provides a more robust and precise prognostic
tool than that of individual testing modalities. Historically,
relationships among immunophenotype, genotype, mor-
phology, and outcome have been loosely correlated,23-27
with phenotypic associations hinging largely on the
expression of a single antigen.28,29 Although previous stud-
ies have performed clustering analysis of immunopheno-
typic data to identify small subgroups of patients with
poor prognosis,30-32 such studies have not evaluated a suffi-
ciently large cohort of uniformly treated patients. By
defining the IEP as a continuous variable, patients with
similar global immunophenotypic patterns can be
grouped together with hierarchical clustering, thus provid-
ing a focal point to correlate continuous and categorical
test results. As such, our findings clarify the heteroge-
neous relationships among phenotype, genotype, mor-
phology at diagnosis, and clinical outcome in pediatric
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Figure 4. Kaplan–Meier analysis of the differences in 5-year EFS among patients with identical phenotypes in different genotypic subclusters. (A) Patients with
inv(16) in Subcluster A-v (green) had a significantly better 5-year EFS than those with inv(16) in Subcluster A-ii (light purple) (P=0.039). (B) Patients with 11q23 in
Subclusters D-i, E-i, F-i, G-I, and H-i had heterogeneous 5-year EFS.

A B



AML. Limiting the study to de novo AML in children and
young adults avoids the increased complexity of multiple
lineages resulting from the progression of myelodysplastic
syndrome to AML in adults.
Phenotypic heterogeneity is observed in AML to such

an extent that the detailed quantitative gene product
expression of each leukemia is unique.33 The observed het-

erogeneity is presumably a result of the accumulation of
multiple genetic abnormalities that can occur in myriad
combinations. Leukemogenesis disrupts normal
hematopoietic development by altering the precise
amounts and timing of appearance of surface gene prod-
ucts required for proper maturation. The accumulation of
multiple genetic mutations causes a loss of gene product

A. Voigt et al.
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Figure 5. Relative influence of IEP components in each cluster. A boosted decision tree model was trained to identify patients in each cluster versus all other
patients. Variable importance was computed by calculating the mean decrease in the Gini index relative to the maximum decrease in the Gini index.10 The relative
influence of the six most important IEP components were plotted for each cluster. In addition, the relative influence of each IEP component is colored in comparison
to the intensity of the gene product expression on normal, uncommitted progenitor cells for pediatric patients.3 For example, a blue-colored bar indicates that the
average intensity of a surface gene product within a cluster is lower than the average intensity of that same surface gene product in normal pediatric patients. The
combination of most influential IEP components provides insight regarding the multidimensional pattern of surface gene products that are expressed within each
cluster. Of note, surface gene products need not be aberrantly expressed to have a high relative influence. 



regulation resulting in a unique quantitative immunophe-
notype for each individual leukemia. 
Previous efforts have applied computational algorithms

to elucidate genomic (in one case fully genomic) classifica-
tions of adult AML, correlating overlapping genotypic pro-
files with clinical outcome.34-36 It is remarkable that by
using immunophenotype as the discriminator of patient
cohorts we observe several similarities between the cur-
rent pediatric study and those (using genomic data as the
discriminator) in adult AML. These similarities include:
the number of computationally relevant AML subtypes,
the high level of specificity with which the t(8;21) and
inv(16) cohorts cluster together, and indications of further
biologic and prognostic subdivisions within current cyto-
genetic classifications. Most notably, we observe a similar
occurrence of multiple FLT3-ITD subgroups, with a subset
exhibiting NPM1 co-mutations, in line with those report-
ed by Papaemmanuil and colleagues.36 Additional com-
monalities include an observed subset of t(8;21) patients
with co-occurring c-KIT mutation, and, to a lesser extent,
a subset of patients with overlapping inv(16) and c-KIT
mutations. Where a few previous studies have shown the
negative impact of c-KIT on OS, relative risk (RR), com-
plete response (CR), and/or EFS for CBF-AML patients,37-39
our results are in agreement with those studies which
show no additional prognostic effect of c-KIT on the OS
and EFS of CBF-AML patients.40,41 Our study also revealed
more diverse subgroups of the MLL fusion patients than
previous studies, which is not surprising given the higher
prevalence of MLL mutations observed in pediatric AML.
Interestingly, immunophenotype alone identifies

patient subgroups with adverse clinical outcome.  Patients
in Clusters G, H, and K had poor 5-year EFS and OS, and
both univariable and multivariable Cox regression analy-
ses demonstrated that these phenotypes were independ-
ent predictors of poor outcome. Interestingly, Group H
had markedly poor outcome and no unifying genetic fea-
tures, yet a high frequency of patients in the cohort had
genetic abnormalities. When comparing patients with
favorable-risk cytogenetic/molecular markers in Group H
to all other patients with the same favorable-risk markers,
those in Group H have significantly worse survival, sug-
gesting that additional uncharacterized mutations cap-
tured in the immunophenotype have an adverse effect on
patient outcome. 
We recently reported that the RAM immunophenotype

independently identifies a cohort of very young pediatric
AML patients with poor response to therapy and adverse
outcome.6 Herein we demonstrate that this cohort, which
was originally identified by expert analysis, can be repro-
duced by hierarchical cluster analysis. In addition, 63% of
RAM patients were discovered to have the CBFA2T3–

GLIS2 chimeric fusion gene, which also indicates a poor
prognosis in AML.19,20 Patients with RAM positive status
but CBFA2T3-GLIS negative status have equally poor out-
come (data not shown), highlighting one context in which a
solely genomic approach would preclude identifying all
poor-risk patients with these clinical features.
Multidimensional phenotypes can also help to further

explain the heterogeneous response to therapy seen with-
in conventional cytogenetic classifications. Although
patients with inv(16) are considered to be low-risk,1,42
patients with inv(16) in Subcluster A-ii had significantly
worse 5-year EFS than those in Subcluster A-v. Patients
with inv(16) in Subcluster A-ii had distinct immunophe-
notypic features from those within Subcluster A-v (Online
Supplementary Figure S2), suggesting that additional genetic
abnormalities may contribute to the differential expres-
sion of gene products and perhaps a more aggressive clin-
ical course. However, both subclusters had a similar
prevalence of corresponding c-KIT mutations, indicating
that the specific addition of the c-KIT mutation does not
explain the observed difference in outcome, as has been
reported among pediatric patients with core binding factor
previously defined, thus it should be deleted here and left
as CBF-AML.40 This finding further supports the fact that
the combination of phenotype and genotype can provide
a more accurate method to predict the risk of induction
failure, relapse or death in these genetically defined low-
risk patients.
Our novel approach of clustering diagnostic

immunophenotypes facilitates the segregation of patients
with potentially hundreds of different genotypes into clin-
ically meaningful cohorts, thereby allowing a more accu-
rate prognostic determination within apparently uniform
genetic groupings.  As patients with similar genotypes
segregated in similar regions of the dendrogram, genetic
subclusters with high phenotypic-genotypic associations
could be identified. This begins to elucidate the relation-
ship between a genetic hit and its phenotypic conse-
quence and the subsequent impact on clinical outcome.
We plan to further validate these findings in COG
AAML1031.
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