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SUMMARY
To define the mutation spectrum in non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL),
we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our
Significance

Acute megakaryoblastic leukemia (AMKL) accounts for 10% of childhood acute myeloid leukemia (AML). Although AMKL
patients with Down syndrome (DS-AMKL) have an excellent survival, non-DS-AMKL patients have an extremely poor
outcome with a 3 year survival of less than 40%. With the exception of the t(1;22) seen in the majority of infants with non-
DS-AMKL, little is known about the molecular lesions that underlie this leukemia subtype. Our results identified a fusion
gene, CBFA2T3-GLIS2, that functions as a driver mutation in a subset of these patients. Importantly, pediatric patients
with CBFA2T3-GLIS2 expressing AMKL had inferior outcomes (5 year survival 34.3% versus 88.9%; p = 0.03), demon-
strating that this lesion is a prognostic factor in this leukemia population.
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findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL samples. Our analysis
identified a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)) in 27% of pediatric cases, which encodes
a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic
cells induced bone morphogenic protein (BMP) signaling and resulted in a marked increase in the self-
renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2
directly contributes to leukemogenesis.
INTRODUCTION

Acute megakaryoblastic leukemia (AMKL) accounts for approx-

imately 10% of pediatric acute myeloid leukemia (AML) and 1%

of adult AML (Athale et al., 2001; Barnard et al., 2007; Oki et al.,

2006; Tallman et al., 2000). AMKL is divided into two subgroups:

AMKL arising in patients with Down syndrome (DS-AMKL), and

leukemia arising in patients without Down syndrome (non-DS-

AMKL). Although DS-AMKL patients have an excellent prognosis

with an �80% survival, non-DS-AMKL patients do not fare as

well, with a reported survival of only 14%–34% despite high-

intensity chemotherapy (Athale et al., 2001; Barnard et al.,

2007; Creutzig et al., 2005). With the exception of the t(1;22)

seen in infant non-DS-AMKL, little is known about the molecular

lesions that underlie this leukemia subtype (Carroll et al., 1991;

Lion et al., 1992; Ma et al., 2001; Mercher et al., 2001).

We recently reported data from a high-resolution study of

DNA copy number abnormalities (CNAs) and loss of heterozy-

gosity on pediatric de novo AML (Radtke et al., 2009). These

analyses demonstrated a very low burden of genomic alter-

ations in all pediatric AML subtypes except AMKL. AMKL cases

were characterized by complex chromosomal rearrangements

and a high number of CNAs. To define the functional con-

sequences of the identified chromosomal rearrangements in

non-DS-AMKL, the St. Jude Children’s Research Hospital-

Washington University Pediatric Cancer Genome Project per-

formed transcriptome and exome sequencing on diagnostic

leukemia samples.

RESULTS

AMKL Is Characterized by Chimeric Transcripts
Transcriptome sequencing was performed on diagnostic leu-

kemia cells from 14 pediatric non-DS-AMKL patients (discovery

cohort) (see Tables S1 and S2 available online). Our analysis

identified structural variations (SVs) that resulted in the expres-

sion of chimeric transcripts encoding fusion proteins in 12 of

14 cases (Table S3). Remarkably, in 7 of 14 cases, a cryptic

inversion on chromosome 16 (inv(16)(p13.3q24.3)) was detected

that resulted in the joining of CBFA2T3, a member of the ETO

family of nuclear corepressors, to GLIS2, a member of the GLI

family of transcription factors (Figures 1, 2, and S1). In six of

these cases, exon 10 of CBFA2T3 was fused to exon 3 of

GLIS2, whereas in the remaining one case, exon 11 of CBFA2T3

was fused to exon 1 of GLIS2. Both encoded proteins retain

the three CBFA2T3 N-terminal nervy homology regions that

mediate protein interactions and the five GLIS2 C-terminal zinc

finger domains that bind the Glis DNA consensus sequence

(Figures 1A and 1B). Whole-genome sequence analysis of tumor

and germline DNA from four cases demonstrated that the
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CBFA2T3-GLIS2 chimeric gene resulted from simple balanced

inversions in three cases and a complex rearrangement involving

chromosomes 16 and 9 in the fourth case (Figures 2 and S1).

Chimeric transcripts were also detected in five of seven

leukemia samples that lacked expression of CBFA2T3-GLIS2,

including one case each expressing in-frame fusions of

GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A,

GRB10-SDK1, and C8orf76-HOXA11AS (Figure 3; Table S3).

Importantly, several of the genes involved in these transloca-

tions play a direct role in normal megakaryocytic differentiation

(GATA2 and FLI1), have been previously shown to be involved

in leukemogenesis (HOXA9, MN1, HOXB9, NUP98, KDM5A),

or are highly expressed in hematopoietic stem cells or mye-

loid/megakaryocytic progenitors (Figure S2) (Argiropoulos and

Humphries, 2007; Buijs et al., 2000; Heuser et al., 2011; Kawada

et al., 2001; Visvader et al., 1995; Wang et al., 2009). Analysis of

a recurrency/validation cohort consisting of diagnostic leukemia

cells from 62 AMKL cases (34 pediatric and 28 adult) revealed 6

additional pediatric samples carrying CBFA2T3-GLIS2 for an

overall frequency of 27% (13 of 48) in pediatric AMKL (Table

S1). None of the adult AMKL cases contained this chimeric

transcript, suggesting that this lesion is restricted to pediatric

non-DS-AMKLs. NUP98-KDM5A was the only other chimeric

transcript that was recurrent, being detected in 8.3% (4 of 48)

of pediatric cases (Table S1). This chimeric transcript was also

not detected in adult AMKLs.

Cooperating Lesions in AMKL
In addition to the described chimeric transcripts, exome

sequence analysis on 10 of the 14 samples in the discovery

cohort that had matched germline DNA, coupled with CNAs de-

tected by Affymetrix SNP6microarrays, revealed an average of 5

(range 1–14) somatic nonsilent sequencemutations and 5 (range

0–11) CNAs involving annotated genes per case. (Tables S4, S5,

and S6; Figure S1). Despite the relative paucity of somatic muta-

tions, recurrent lesions were identified in JAK kinase genes,MPL

and GATA1, which have been previously shown to play a role in

AMKL (Malinge et al., 2008). Sequence analysis of these genes in

cases within the recurrency cohort that had available genomic

DNA revealed activating mutations in JAK kinases (9 of 51,

17.6%) and MPL (2 of 51, 3.9%), as well as inactivating muta-

tions in GATA1 (5 of 51, 9.8%) (Tables S1 and S6). In addition,

7 of 14 cases with available copy number data contained ampli-

fication of chromosome 21 in the Down syndrome critical region

(DSCR; chr21q22) that includes genes known to play a role in

AML such as RUNX1, ETS2, and ERG (Table S4; Figure S1).

Three of these cases carry the CBFA2T3-GLIS2 chimeric gene.

Importantly, the total burden of somatic mutations was signifi-

cantly lower in the CBFA2T3-GLIS2-expressing cases (7.17 ±

3.60 versus 16.60 ± 5.13; p = 0.009; Table S5).
.



Figure 1. Inv(16)(p13.3;q24.3) Encodes a CBFA2T3-GLIS2 Chimeric Transcript

(A) Schematic of chromosome 16 with locations of GLIS2 and CBFA2T3 shown. Arrows indicate orientation of the gene and the green and red lines the probes

used for FISH. The protein structure of the genes is shown below chromosome 16 and is not drawn to scale. Breakpoints are indicated by arrows. TAD,

transactivation domain; TRD, transcriptional regulatory domain; ZF, zinc finger; NHR, nervy homology region.

(B) Schematic of CBFA2T3-GLIS2 chimeric protein.

(C) Interphase FISH analysis of two representative patient samples carryingCBFA2T3-GLIS2. TheGLIS2 probe is green; theCBFA2T3 probe is red. White arrows

indicate the fusion event. Scale bars, 10 mm.

(D) RT-PCR for CBFA2T3-GLIS2 and GAPDH on the discovery cohort.

See also Figure S1 and Tables S1, S2, S3, S4, S5, and S6.
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CBFA2T3-GLIS2 AMKL Is a Distinct Subtype of Pediatric
AMKL with a Poor Prognosis
The gene expression profile of CBFA2T3-GLIS2 AMKL was dis-

tinct from that of AMKL cells lacking this chimeric transcript and

from other genetic subtypes of pediatric AML (Figures 4A and

4B). A detailed coexpression network analysis of the top 4,000

differentially expressed genes suggests that expression of

CBFA2T3-GLIS2 leads tomarkedupregulation ofBMP2, a down-

stream target of Hedgehog signaling (Figures 4B and S3; Table

S7). Moreover, gene set enrichment analysis based on KEGG

pathway annotation of the top-scoring network module demon-

strated Hedgehog and JAK-STAT pathways to be significantly

upregulated in CBFA2T3-GLIS2-positive AMKL (Figure S3).
Can
Given the historically poor outcomes seen in pediatric non-DS-

AMKL, we next explored whether the presence of CBFA2T3-

GLIS2 identified a clinically distinct subset of cases. Outcome

data were available on 40 pediatric patients. Although these

patients were treated at a number of different centers using a

variety of different therapeutic approaches, the presence of

CBFA2T3-GLIS2 identified a subgroup of patients with a signifi-

cantly worse overall survival at 5 years as compared to patients

with AMKL that lacked this chimeric transcript (28.1% versus

41.9%; p = 0.05; Figure 4C). Moreover, when this analysis was

limited to patients treated at a single institution (St. Jude, n =

19), the adverse prognostic impact of CBFA2T3-GLIS2 on sur-

vival was maintained (34.3% versus 88.9%; p = 0.03; Figure 4D).
cer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc. 685



Figure 2. Somatic Mutations in Whole-Genome-Sequenced AMKL Cases

Plots depict structural genetic variants, including DNA copy number alterations, intra- and interchromosomal translocations, and sequence alterations (Krzy-

winski et al., 2009). DNA copy number alterations: loss of heterozygosity (LOH), orange; amplification, red; deletion, blue. Sequence mutations in Refseq genes:

silent SNVs (SNVs), black; UTR, brown; nonsilent SNVs, blue. Genes at structural variant breakpoints: genes involved in in-frame fusions, red; others, green.
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CBFA2T3-GLIS2-Modified Hematopoietic Cells
Demonstrate Enhanced Self-Renewal
CBFA2T3 (also known as MTG16) was initially identified as

a fusion partner with RUNX1 in rare cases of therapy-related

AML that contain a t(16;21)(q24;q22) (Gamou et al., 1998).

More recently, CBFA2T3 has been implicated in the mainte-

nance of hematopoietic stem cell quiescence (Chyla et al.,

2008). By contrast, to our knowledge, GLIS2 has not been

previously implicated in leukemogenesis. GLIS2 is a member

of the GLI-similar (GLIS1-3) subfamily of Krüppel-like zinc finger

transcription factors and is closely related to the GLI family of

transcription factors that function as critical elements of the

hedgehog signaling pathway (Kim et al., 2007; Lamar et al.,

2001). GLIS2 is expressed in the kidney, and germline-inactivat-

ing mutations lead to nephronophthisis, an autosomal recessive
686 Cancer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc
cystic kidney disease (Attanasio et al., 2007). Although GLIS2 is

not normally expressed in the hematopoietic system, its fusion to

CBFA2T3 as a result of the inv(16)(p13.3q24.3) results in high-

level expression of the C-terminal portion of the protein including

its DNA-binding domain (Figure S1).

To explore the functional effects of the CBFA2T3-GLIS2

fusion protein, we transduced murine hematopoietic cells with

a retrovirus expressing either CBFA2T3-GLIS2 or GLIS2 alone

and assessed their effect on in vitro colony formation, dif-

ferentiation, and replating efficiency as a surrogate measure

of self-renewal (Figures 5A and 5B). On the initial plating,

the expression of CBFA2T3-GLIS2 had no effect on colony

numbers, size, or overall myeloid/erythroid differentiation when

cells were grown in the presence of IL3, IL6, SCF, and

EPO. However, hematopoietic cells transduced with the empty
.



Figure 3. Low-Frequency Chimeric Transcripts in Pediatric AMKL

Four chimeric transcripts were identified in one case each of the discovery cohort and tested for in the recurrency cohort: GATA2-HOXA9, MN1-FLI1, NIPBL-

HOXB9, and NUP98-KDM5A.

(A) RT-PCR validation of the discovery cohort. Primers and conditions are described in Supplemental Experimental Procedures.

(B) Interphase FISH analysis of M703 carrying the MN1-FLI1 chimeric protein. The MN1 probe is red; the FLI1 probe is green. White arrows indicate the fusion

event. Scale bar, 10 mm.

(C) Schematic of chimeric proteins. Exons and domains are not drawn to scale. NRD, negative regulatory domain; ZNF, zinc finger; MIM, Meis interactionmotif; HD,

Hoxdomain;Ets,E-twenty sixdomain;FLS,Fli1-specific region;CTA,C-terminal transactivationdomain;GLN,glutamine-richdomain;NLS,nuclear-localizingsignal;

HEAT,Huntingtin/EF3/PP2A/TOR1 domain; FG, phenylalanine-glycine repeats; JMJ, jumonji domain; ARID, AT-rich interaction domain; PHD, plant homeodomain.

See also Figure S2.
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retrovirus (MSCV-IRES-mCherry [MIC]) failed to form colonies

after the second replating, whereas expression of either

CBFA2T3-GLIS2 or wild-type GLIS2 resulted in a marked
Can
increase in the self-renewal capacity, with colony formation

persisting through ten replatings (Figure 5C). Upon serial replat-

ing, two colony types were detected: CFU-GM and CFU-Meg
cer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc. 687



Figure 4. CBFA2T3-GLIS2 Defines a Unique Subtype of AML with a Distinct Gene Expression Signature and Poor Outcomes

(A) Principal component analysis of the gene expression profiles of the AMKL discovery cohort and 32 other non-AMKL AML samples representing all other

known genetic subtypes of pediatric AML. Clusters were generated using 1,000 genes selected by k-means algorithm. A detailed description of the samples

included in this analysis can be found at NCBI Gene Expression Omnibus, accession GSE35203.

(B) Heatmap of differentially expressed genes in the top-scoring network module of CBFA2T3-GLIS2-positive (pos) and -negative (neg) AMKL patient samples.

For gene relationships, please see Figure S3. For a detailed list of the top 500 differentially expressed genes (not limited to this network), please see Table S7.

(C) Overall survival of 40 pediatric non-DS AMKL cases treated at multiple institutions (CBFA2T3-GLIS2-negative cases n = 28, and CBFA2T3-GLIS2-expressing

cases, n = 12). The curves for the two groups were tested by log rank method and exact test using permutation that yielded a p value of 0.05.

(D) Overall survival of 19 pediatric non-DS AMKL cases treated at St. Jude Children’s Research Hospital (CBFA2T3-GLIS2-negative cases, n = 9, and CBFA2T3-

GLIS2-expressing cases, n = 10). The curves for the two groups were tested by log rank method and exact test using permutation that yielded a p value of 0.03.

See also Figure S3 and Table S7.
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(Figure 5D). Immunophenotypic analysis at the third replating

also revealed evidence of megakaryocytic differentiation with

CD41/CD61 dual expression and the absence of cKIT and
688 Cancer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc
Sca1 expression in the majority of cells (Figure 5E). Importantly,

CBFA2T3-GLIS2-expressing cells remained growth factor de-

pendent, suggesting that cooperating mutations in growth factor
.
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signaling pathways are likely required for full leukemic

transformation (data not shown). Moreover, transplantation of

CBFA2T3-GLIS2-transduced bone marrow cells into syngeneic

recipients failed to induce overt leukemia at day 365 as demon-

strated by normal blood counts and low-level reporter gene

expression in peripheral blood (<5%) (data not shown), consis-

tent with a requirement for cooperative mutations. Failure to

induce leukemia in mice as a single lesion has been previously

reported for other chimeric genes that confer the ability to serially

replate in colony-forming assays, including AML1-ETO (Higuchi

et al., 2002).

CBFA2T3-GLIS2 Induces BMP Signaling
GLIS2 can function as both a transcriptional activator and

repressor depending on the cellular context and has been

implicated in altered signaling through a number of pathways

including sonic hedgehog-GLI1 (SHH) andWNT/b-catenin (Atta-

nasio et al., 2007; Kim et al., 2007). Analysis of the gene expres-

sion signatures of CBFA2T3-GLIS2 expressing AMKLs revealed

altered expression of a number of genes in the SHH and WNT

pathways, as well as genes in the bone morphogenic protein

(BMP) pathway, which is directly influenced by SHH signaling

(Figures 4B, 6A, and S3) (Dahn and Fallon, 2000; Ingham and

McMahon, 2001; Vokes et al., 2007). When this analysis was

limited to genes containing GLI consensus DNA-binding sites

(Gli-BS) in their promoters or to genes known to be transcrip-

tional targets of GLIS2, marked overexpression of PTCH1,

HHIP, BMP2, and BMP4 was observed (Figures 6B, S3, and

S4; Table S7) (Attanasio et al., 2007). Consistent with this

observation, although CBFA2T3-GLIS2 only weakly activated

transcription of a reporter construct containing the Gli-BS (Fig-

ure S4), it strongly activated transcription of the Gli-BS-contain-

ing BMP4 promoter-driven luciferase construct and induced

expression of BMP4 in murine hematopoietic cells (Figures 6C

and S4). Moreover, CBFA2T3-GLIS2 strongly activated a BMP

response element (BRE) containing luciferase reporter construct

and induced expression of the BMP downstream transcriptional

target, inhibitor of differentiation 1 (ID1) (Korchynskyi and ten

Dijke, 2002), consistent with the induced expression of BMP2/

BMP4 (Figure S4).

BMP signaling plays a critical role in the specification of hema-

topoiesis in developing embryos, and studies suggest that

BMP4 stimulation can augment megakaryocytic output from

CD34 progenitors (Jeanpierre et al., 2008; Söderberg et al.,

2009). To determine if the observed CBFA2T3-GLIS2-induced

BMP expression contributes to the enhanced replating capacity

of murine hematopoietic cells, colony-replating assays were

repeated in the presence of dorsomorphin, a selective small

molecule inhibitor of the BMP type I receptors that blocks

BMP-mediated phosphorylation of SMAD 1/5/8 (Yu et al.,

2008). Importantly, CBFA2T3-GLIS2 as well as GLIS2-express-

ing hematopoietic cells were significantly more sensitive to

dorsomorphin than wild-type cells in the first plating (Figure 6D).

Continuous exposure to dorsomorphin inhibited colony forma-

tion in a dose-dependent manner on subsequent platings (data

not shown). Interestingly, sublethal doses of dorsomorphin in

CBFA2T3-GLIS2-positive cells led to an upregulation of Bmp4

and Id1 transcripts over time, with colony counts returning to

untreated levels, suggesting that cells are able to overcome
Can
this inhibition by upregulating the BMP pathway (data not

shown).

To further explore the downstream signaling of CBFA2T3-

GLIS2 in human leukemia cell lines, we first assessed the expres-

sion level of GLIS2 in human cancer cell lines using the recently

published Broad-Novartis Cancer Cell Line Encyclopedia (Fig-

ure 7A) (Barretina et al., 2012). Interestingly, this analysis showed

that GLIS2 expression levels are lowest in leukemia cell lines.

Moreover, within the leukemias, the highest expressing cell line

was the pediatric AMKL cell line M07e. To further explore

AMKL cell lines, we performed RT-PCR for CBFA2T3-GLIS2

on five human AMKL cell lines. Three of the five cell lines (RS1,

WSU-AML, and M07e) expressed CBFA2T3-GLIS2 (Figure 7B).

The presence of the chimeric gene in these lines was validated

by FISH analysis (Figure 7B). We went on to determine the

relative expression of BMP genes by semiquantitative RT-PCR

and found a trend toward upregulation of these genes in the

CBFA2T3-GLIS2-positive cells (Figure 7C). We also assessed

our AMKL cell lines for dorsomorphin sensitivity and found

a trend toward increased sensitivity in cell lines expressing

CBFA2T3-GLIS2 as determined by a standard MTT assay

(Figure 7D).

To determine if CBFA2T3-GLIS2 induces the upregulation of

BMP signaling in vivo, we generated transgenic Drosophila ex-

pressing either CBFA2T3-GLIS2 or full-length GLIS2 using an

epithelial promoter and examined their effect on fly development.

During Drosophila development, the WNT, BMP, and SHH

homologs (Wg, Dpp, and Hh, respectively) have distinct roles in

patterning adult wing structures (Dahn and Fallon, 2000; Ingham

and McMahon, 2001; Vokes et al., 2007). When altered, these

signaling pathways trigger characteristic loss- and gain-of-

function phenotypes (Tabata and Takei, 2004). Expression of

CBFA2T3-GLIS2 and full-length GLIS2 in Drosophila resulted in

ectopic expression of endogenous dpp, the fly homolog of

BMP4, in wing imaginal discs (Figures 8A and S5). Immunofluo-

rescence confirmed the nuclear localization of CBFA2T3-GLIS2

(Figure 8A). Both CBFA2T3-GLIS2 and GLIS2 overexpression

induced lethality. However, a small number of escapers devel-

oped to pharate adults and demonstrated a morphologic dpp

gain-of-function phenotype; wing hinges were converted to

notum, and legs were shortened and broadened (Figure 8B)

(Grieder et al., 2009). Rare CBFA2T3-GLIS2 transgenic flies

developed to adulthood anddemonstratedmild ectopic venation

throughout the wing blade, as well as wing blistering consistent

with a dpp gain-of-function phenotype (Figure 8B) (Sander

et al., 2010).

DISCUSSION

Sequence analysis of pediatric non-DS-AMKLs revealed the

expression of an inv(16)-encoded CBFA2T3-GLIS2 in almost

30% of pediatric non-DS-AMKL patients, and its presence

defined a distinct subgroup of patients that had an excep-

tionally poor outcome when compared to patients with AMKL

that lacked this lesion. In addition, five other chimeric tran-

scripts (GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, GRB10-

SDK1, and C8orf76-HOXA11AS) were detected in single AMKL

cases. Surprisingly, none of the identified chimeric transcripts

was detected in adult AMKL cases, highlighting the significant
cer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc. 689



Figure 5. CBFA2T3-GLIS2 Leads to Enhanced Replating of Hematopoietic Cells

(A) Experimental design. Murine bone marrow cells were transduced with retroviral vectors expressing mCherry alone (MIC), or mCherry along with GLIS2, or

CBFA2T3-GLIS2. Transduced cells were purified by sorting mCherry-positive cells and plated onto methylcellulose containing IL3, IL6, SCF, and EPO. Colonies

were counted after 7 days of growth and replated serially.

(B) Semiquantitative RT-PCR of GLIS2 utilizing cells harvested from first round of plating. GLIS2 primers are specific for the 30 half of the transcript and thus pick

up both full-length GLIS2 as well as CBFA2T3-GLIS2. Expression in MIC cells was defined as one (1), and data are pooled from two separate experiments with

similar results. p % 0.0001 as determined by one-way ANOVA. Error bars represent mean ± SEM of two independent experiments.

(C) Number of colonies detected at 7 days following each plating. Error bars represent mean ± SEM of two independent experiments.
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Figure 6. CBFA2T3-GLIS2 Activates the BMP Pathway

(A) The Hedgehog (HH) signaling pathway. In addition to classic hedgehog targets such as PTCH and HHIP, WNT and BMP gene expression have been

demonstrated to be affected by the GLI transcription factor in various models (Dahn and Fallon, 2000; Ingham and McMahon, 2001; Vokes et al., 2007).

(B) Gene expression profiles from CBFA2T3-GLIS2 containing AMKL cases and other AML subtypes were evaluated for expression levels of BMP,WNT, and HH

target genes.CBFA2T3-GLIS2-negative AMKL cases are not shown in this analysis. Significantly upregulated probe sets (FDR less than 0.05) are designated with

red font: BMP2 FDR 1.06 3 10–17, BMP4 FDR 0.015976, PTCH1 FDR 2.05 3 10–6, and HHIP FDR 0.0038.

(C) Murine bone marrow cells were transduced with retroviral vectors carrying mCherry alone (MIC), mCherry plus GLIS2, or CBFA2T3-GLIS2. mCherry-positive

cells were sorted and plated in methylcellulose containing IL3, IL6, SCF, and EPO. Following 1 week of growth, RNA was isolated, reverse transcribed, and

amplified withBmp4 or Hprt-specific primers. Error bars represent mean ± SEM of four independent experiments. A representative gel is shown (�, neg; M, MIC;

G, GLIS2; C-G, CBFA2T3-GLIS2). p = 0.047 as determined by one-way ANOVA.

(D)GLIS2 and CBFA2T3-GLIS2 sensitize murine hematopoietic cells to BMP receptor type I inhibition. Colony-formation assays were conducted in the presence

or absenceof dorsomorphin at the indicated concentrations (Yu et al., 2008). IC50 valueswere calculated as the amount of drug required to inhibit 50%of thecolony

formation as determined by colony counts. Error bars represent mean ± SEM of two independent experiments. p = 0.036 as determined by one-way ANOVA.

See also Figure S4.

Cancer Cell

CBFA2T3-GLIS2 Defines an Aggressive Type of AMKL
biological differences between pediatric and adult AMKL. Impor-

tantly, each of the detected chimeric transcripts is predicted to

encode a fusion protein that would alter signaling pathways
(D) Colony morphology detected in GLIS2 and CBFA2T3-GLIS2-modified cells

500 mm. Representative cytospins and morphology of each colony type are show

(E) Cells harvested from colony-forming assays after three ormore replatings were

not shown).

Can
known to play a role in normal hematopoiesis, suggesting that

these lesions are ‘‘driver’’ mutations that directly contribute

to the development of leukemia. In addition to these somatic
from the second plating and beyond. a, CFU-Meg; b, CFU-GM. Scale bars,

n. c, CFU-Meg; d, CFU-GM. Scale bars, 50 mm.

subjected to flow cytometry. Cells were negative for acetylcholinesterase (data

cer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc. 691



Figure 7. CBFA2T3-GLIS2 Is Present in AMKL Cell Lines

(A) GLIS2 expression as determined by gene expression arrays in 991 human cancer cell lines. Log2-transformed expression levels are shown. Data were ob-

tained from the Broad-Novartis Cancer Cell Line Encyclopedia (http://www.broadinstitute.org/ccle/home). A total of 34 AML cell lines are included; the extreme

outlier of this subtype, M07e, is indicated. The GLIS2 probe set recognizes the end of the transcript and thus does not distinguish between wild-type GLIS2 and

CBFA2T3-GLIS2. Median values are indicated by the band within the box plots; the ends of the whiskers indicate upper and lower adjacent values. Outliers are

denoted by open circles.

(B) RT-PCR on five AMKL cell lines: MEG-01, CHRF-288-11, RS-1, WSU-AML, and M07e. The three cell lines carrying CBFA2T3-GLIS2 were validated by FISH.

Scale bars, 10 mm.

(C) Real-time semiquantitative RT-PCR ofGLIS2,BMP2,BMP4, and ID1 on the five AMKL cell lines. Expression levels relative to b-actin are shown. CHRF-288-11

expression levels were set to one (1) for comparison across cell lines. Error bars represent mean ± SEM of two independent experiments.

(D) Dorsomorphin sensitivity in the cell lines as determined by MTT assay. Error bars represent mean ± SEM of two independent experiments. For cell line

information and MTT assay, please see Supplemental Experimental Procedures.
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structural alterations, a variety of other somatic mutations were

detected, including activatingmutations in kinase signaling path-

ways in 21.6% of cases (JAK kinase family members and MPL),

inactivatingmutations inGATA1 in 9.8%of cases, and amplifica-

tion of chromosome21 in theDSCR that includes genes known to

play a role in AML such as RUNX1, ETS2, and ERG in 50% of the

cases. How these mutations interact to not only induce overt

leukemia but also to influence therapeutic responses remains

to be determined.

As part of the St. Jude Children’s Research Hospital-

Washington University Pediatric Cancer Genome Project, we

have sequenced 260 cases of pediatric cancers across multiple

tumor types (Downing et al., 2012). The CBFA2T3-GLIS2 fusion

was limited to AMKL cases. This specificity may exist for several
692 Cancer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc
reasons. The N-terminal portion of the fusion, CBFA2T3, is

primarily expressed in the hematopoietic compartment, leading

one to predict that expression of the inversion product, if it were

to occur, would primarily be limited to hematopoietic cells.

Although we do not know the exact target cell of transformation,

induction of BMP4 signaling in human CD34+ progenitors has

been demonstrated to increase the percentage of megakaryo-

cyte and erythroid colonies in vitro (Fuchs et al., 2002; Jeanpierre

et al., 2008). Thus, enhanced BMP signaling as a result of the

expression of the inv(16)-encoded CBFA2T3-GLIS2 may directly

contribute to the megakaryocytic differentiation of the leukemia

cells.

The inv(16)-encoded CBFA2T3-GLIS2 chimeric gene induced

aberrant high-level expression of the DNA-binding domain of
.

http://www.broadinstitute.org/ccle/home


Figure 8. Transgenic CBFA2T3-GLIS2 Drosophila Ectopically Expresses Dpp

(A) CBFA2T3-GLIS2 was expressed under control of Apterous-Gal4 (strong epithelial dorsal driver). dpp-lacZ serves as a reporter for dpp induction. Wing

imaginal discs were isolated at the late third instar, stained for b-gal as a readout for dpp (green), CBFA2T3 (red), and DAPI (blue), followed by immunofluo-

rescence analysis. Nuclear localization of CBFA2T3-GLIS2 can be seen by the pink signal (inset). Scale bars, 100 mm.

(B) CBFA2T3-GLIS2 was expressed under control of C765, a weak epithelial driver. Pharate adults were dissected from pupal casings and imaged. Arrows

indicate ectopic notum, broadened and shortened legs. NoC765 >GLIS2 Drosophilamatured to adulthood. Arrows indicate ectopic veins in wings of rareC765 >

CBFA2T3-GLIS2 escapers.

See also Figure S5.
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GLIS2 in hematopoietic cells, along with the disruption of one

allele of CBFA2T3, a gene whose encoded protein has been

shown to play a role in maintaining normal hematopoietic stem

cell quiescence (Chyla et al., 2008). GLIS2 is a distant member

of the GLI superfamily of transcriptional factors that function as

critical transcriptional targets of the SHH signaling pathway

(Hui and Angers, 2011). Although alterations in the SHH pathway

have been directly implicated in a range of cancers (Barakat

et al., 2010), the role of SHH signaling in normal hematopoiesis

and leukemia remains poorly defined (Lim and Matsui, 2010).

Our data suggest that aberrant expression of GLIS2 results in up-

regulation of the classic SHH-negative feedback inhibitors PTCH

and HHIP, coupled with a marked increase in the expression of

BMP2 and 4, resulting in enhanced BMP signaling. These results

indicate that CBFA2T3-GLIS2 functions, in part, as a gain-of-

function GLIS2 allele. The exact mechanisms by which GLIS2

induced the upregulation of BMP2/BMP4 remains incompletely

defined, although our data suggest that a direct transcription

effect of GLIS2 on the BMP4 promoter is likely, although an indi-

rect mechanism may also contribute.

Interestingly, BMP4 has been shown to expand and maintain

human cord blood hematopoietic stem cells in vitro both directly,

as well as indirectly via SHH signaling (Bhardwaj et al., 2001;
Can
Bhatia et al., 1999). Furthermore, ID1, a downstream BMP target

previously implicated in leukemogenesis, was found to be

upregulated in CBFA2T3-GLIS2-modified hematopoietic cells,

demonstrating that this pathway is activated (Wang et al.,

2011). Consistent with these findings, we demonstrated that

activation of BMP signaling contributed to the marked increase

in the replating capacity of myeloid/erythroid-committed pro-

genitors. Accordingly, we found that murine hematopoietic cells

carrying either full-length GLIS2, or CBFA2T3-GLIS2, demon-

strated an increased sensitivity to BMP inhibition, suggesting

that upregulation of this pathway contributes to the observed

phenotype. In addition, BMP4 signaling has been shown to

induce the differentiation of human CD34+ progenitors into

megakaryocytes (Jeanpierre et al., 2008), suggesting that the

upregulation of this pathway is also contributing to the mega-

karyocyte differentiation phenotype of these leukemias. Finally,

BMP4, like thrombopoietin, appears to exert its effects on

human megakaryopoiesis in part through the JAK/STAT path-

ways (Jeanpierre et al., 2008). Interestingly, functional pathway

analysis of gene expression profiles in CBFA2T3-GLIS2-positive

AMKL samples identified genes in the Jak-STAT signaling path-

way to be significantly upregulated (p = 0.0038; FDR 0.022978;

Figure S4). Combined with the identification in some cases of
cer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc. 693
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activating mutations in either JAK family members or MPL in

CBFA2T3-GLIS2-expressing leukemias, our data suggest that

these lesions likely cooperate in leukemogenesis.

Taken together, these data define a poor prognostic subgroup

of pediatric AMKL patients that are characterized by the

inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein.

Expression of CBFA2T3-GLIS2 induces an enhanced replat-

ing capacity of lineage-committed myeloid progenitors, along

with megakaryocytic differentiation, in part through enhanced

BMP2/BMP4 signaling. Whether altered SHH and CBFA2T3-

induced signaling also contributes to leukemogenesis remains

to be determined. Nevertheless, the presented data raise

the important possibility that inhibition of the BMP pathway

may have a therapeutic benefit in this aggressive form of

pediatric AML.

EXPERIMENTAL PROCEDURES

Patients and Samples

Paired-end transcriptome sequencing on diagnostic leukemic blasts was per-

formed on 14 pediatric non-DS-AMKL cases using the Illumina platform. Four

of these cases underwent whole-genome sequencing (WGS) on diagnostic

leukemia blasts and matched germline samples. All 14 cases underwent

whole-exome sequencing for which 10 had matching germline samples. One

additional diagnostic sample with matched germline DNA had whole-exome

sequencing done that did not undergo transcriptome sequencing. All 15 of

these patients were treated at St Jude Children’s Research Hospital from

1990 to 2008. The recurrence cohort consisted of 61 additional cases

including 33 pediatric specimens and 28 adult specimens . All samples were

obtained with patient or parent/guardian-provided informed consent under

protocols approved by the Institutional Review Board at each institution and

St. Jude Children’s Research Hospital.

Sequencing

RNA and DNA library construction for transcriptome and whole-genome DNA

sequencing, respectively, has been described previously (Mardis et al., 2009;

Zhang et al., 2012). Analysis of WGS data and whole-exome sequencing data

that include mapping, coverage and quality assessment, single-nucleotide

variant (SNV)/Indel detection, tier annotation for sequence mutations, predic-

tion of deleterious effects of missense mutations, and identification of loss of

heterozygosity was described previously (Zhang et al., 2012). Please see

Supplemental Experimental Procedures for details.

Recurrency Screening for Sequence Variations and Fusions

We performed recurrence screening on a cohort of 61 AMKL samples. All

61 were screened by RT-PCR (see Supplemental Experimental Procedures

for primers and conditions) for CBFA2T3-GLIS2, GATA2-HOXA9, MN1-

FLI1, NIPBL-HOXB9, and NUP98-KDM5A. Whole-genome-amplified DNA

(QIAGEN) from 38 cases underwent PCR and Sanger sequencing by Beckman

Coulter Genomics for JAK1, JAK2, JAK3, andMPLmutations. In 8 of 38 cases,

a paired matched germline was available. Putative SNVs and indel variants

were detected by SNPdetector (Zhang et al., 2005).

Overall Survival Probabilities

Outcome data were available for 40 pediatric patients tested for CBFA2T3-

GLIS2.CBFA2T3-GLIS2was found in 13 patients. Overall survival was defined

as the date of diagnosis or study enrollment to the date of death with surviving

patients censored at the date of last follow-up. Survival curves were estimated

using the Kaplan-Meier method and compared using the exact log rank test

based on 10,000 permutations.

Affymetrix SNP Array

Affymetrix SNP 6.0 array genotyping was performed for 14 of 15 AMKL cases

in the discovery cohort, and array normalization and DNA copy number alter-

ations were identified as previously described (Lin et al., 2004; Mullighan et al.,
694 Cancer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc
2007; Olshen et al., 2004; Pounds et al., 2009). To differentiate inherited copy

number alterations from somatic events in leukemia blasts from patients lack-

ingmatched normal DNA, identified putative variants were filtered using public

copy number polymorphism databases and a St. Jude database of SNP array

data from several hundred samples (Iafrate et al., 2004; McCarroll et al., 2008).

Gene Expression Profiling

Gene expression profiling was performed using Affymetrix Human Exon 1.0 ST

Arrays (Affymetrix) according to manufacturer’s instructions. This cohort com-

prised 39 pediatric AML samples including AMKL (n = 14), AML1-ETO (n = 4),

CBFB-MYH11 (n = 2),MLL rearranged (n =3),PML-RARA (n = 2),NUP98-NSD1

(n = 2), HLXB9-ETV6 (n = 1), and AML cases lacking chimeric genes (n = 11).

Please see Supplemental Experimental Procedures for further details.

FISH

Dual-color FISH was performed on archived bone marrow cells and cell lines

as described previously by Mullighan et al. (2007). Probes were derived from

bacterial artificial chromosome (BAC) clones (Invitrogen). BACs used were

RP11-830F9 (CBFA2T3), CTD-25555M20 (GLIS2), RP11-345E21 (MN1), and

CTD-2542E23 (FLI1). BAC clone identity was verified by T7 and SP6 BAC-

end sequencing and by hybridization of fluorescently labeled BAC DNA with

normal human metaphase preparations.

Cloning of CBFA2T3-GLIS2 and GLIS2

Total RNA was extracted from leukemia blasts using RNeasy (QIAGEN) and

reverse transcribed using Superscript III (Invitrogen) as per manufacturer’s

instructions. The coding region of CBFA2T3-GLIS2 was PCR amplified from

patient M712 and M707 using primers CBFA2T3_119F and GLIS2_1685R

(see Supplemental Experimental Procedures for primers and conditions).

GLIS2 was PCR amplified from cDNA using primers GLIS2_21F and

GLIS2_1685R (see Supplemental Experimental Procedures for primers and

conditions). PCR products were subcloned into the pGEM-T Easy Vector

(Promega) and sequenced. Clones containing the correct sequence were

then subcloned into the MIC retroviral backbone (Volanakis et al., 2009).

Murine Bone Marrow Transduction and Colony-Forming Assays

All experiments involving mice were reviewed and approved by the Institu-

tional Animal Care and Use Committee. Bone marrow from 4- to 6-week-old

female C57/BL6 mice was harvested and cultured in the presence of recombi-

nant murine SCF (rmSCF), IL3 (rmIL3), and IL6 (rmIL6) (Peprotech; all 50 ng/ml)

for 24 hr prior to transduction on RetroNectin (Takara Bio)-coated plates. Eco-

tropic envelope-pseudotyped retroviral supernatant was produced by tran-

sient transfection of 293T cells as previously described by Soneoka et al.

(1995). Forty-eight hours following transduction, cells were harvested, sorted

for mCherry expression, and plated on methylcellulose containing IL3, IL6,

SCF, and EPO (Stem Cell Technologies, Vancouver, British Columbia,

Canada) as per manufacturer’s instructions. Colonies were counted after

7 days of growth at 37�C, harvested, and replated. In a subset of experiments,

dorsomorphin (Sigma-Aldrich) was added to the methylcellulose at the indi-

cated concentrations.

Flow Cytometry

Cells were resuspended in PBS and preincubated with anti-CD16/CD32 Fc-

block (BD PharMingen) if staining did not include conjugated anti-murine

CD16/32. Aliquots were stained for 15 min at 4�C with conjugated antibodies.

Cells were washed and resuspended in DAPI containing solution (1 mg/ml DAPI

in PBS) for subsequent analysis using FACS LSR II D (BD Biosciences). For

a list of antibodies used, please see Supplemental Experimental Procedures.

Luciferase Assays

The human BMP4 promoter-driven luciferase construct pSLA4.1EX (Van den

Wijngaard et al., 1999) was kindly provided by E. Joop van Zoelen, Nijmegen,

The Netherlands. Themurine BMP response element (pBRE) (Korchynskyi and

ten Dijke, 2002) was kindly provided by Peter ten Dijke, Leiden, The

Netherlands. The 8 3 30 Gli-BS luciferase reporter (pGli-BS) (Sasaki et al.,

1997) has been previously described. TOPFlash and FOPFlash (Korinek

et al., 1997) constructs were obtained from Addgene. For details on luciferase

reporter assays, please see Supplemental Experimental Procedures.
.
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ELISA

BMP4 protein levels in the supernatants from transduced murine hematopoi-

etic cells were determined by ELISA. Briefly, mCherry-positive bone marrow

cells transduced with empty (MIC), GLIS2, or CBFA2T3-GLIS2-containing

retroviruses were placed in media containing IL3, IL6, and SCF for 48 hr,

and supernatant was then harvested and the level of murine BMP4 determined

using an ELISA kit purchased from TSZELISA (http://www.tszelisa.com).

Measurements were done according to manufacturer’s instructions.

Transgenic Drosophila

CBFA2T3-GLIS2 and GLIS2 cDNAs were subcloned into the pUAS-attB

plasmid (Bischof et al., 2007). Transgenic UAS-CBFA2T3-GLIS2 and UAS-

GLIS2 flies were generated using site-specific fC31 integration system (Bis-

chof et al., 2007). Embryo injections were performed by Best Gene. UAS

constructs were targeted to chromosome 2R-51D in order to avoid differential

positional effects on transgene expression. For wing imaginal disc staining,

relevant crosses were performed to generate flies carrying all three trans-

genes: Apterous-Gal4 (a strong epithelial dorsal compartment-specific GAL4

driver), UAS-CBFA2T3-GLIS2, and a dpp-lacZ enhancer trap reporter. Gal4

driver and dpp-lacZ reporter stocks were obtained from the Bloomington

Stock Center. Wing imaginal discs were dissected from wandering third-instar

larvae, fixed, and immunostained using anti-b-gal (Promega; Z378), anti-

CBFA2T3 (Abcam; ab33072), and DAPI (Invitrogen; D3571) as previously

described by Carroll et al. (2012). To assess the phenotypic effects of

CBFA2T3-GLIS2 and GLIS2, UAS transgenes were expressed under control

of the epithelial driver C765-Gal4, and progeny was observed. Pharate adults

were dissected from pupal casings and imaged.

ACCESSION NUMBERS

The sequence data and SNP microarray data have been deposited in the

dbGaP database (http://www.ncbi.nlm.nih.gov/gap) under the accession

number phs000413.v1.p1. Affymetrix gene expression data have been depos-

ited in the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/) under GSE35203.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, seven tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.ccr.2012.10.007.

ACKNOWLEDGMENTS

The authors would like to specifically thank Joy Nakitandwe for critical

input and discussions, Susana Raimondi for review of cytogenetics, Matt

Stine for assistance with data deposition, Bill Pappas and Scott Malone

for support of the information technology infrastructure, and the staff of

Tissue Resources Laboratory, Flow Cytometry and Cell Sorting Core, the

Hartwell Center for Biotechnology and Bioinformatics of St Jude Children’s

Research Hospital, and Emily Dolezale for assistance in sample procurement

at Memorial Sloan Kettering Cancer Center. This work was supported by

grants from the National Institutes of Health (Cancer Center Support Grant

P30 CA021765), the Eric Trump Foundation, a Leukemia & Lymphoma

Society Specialized Center of Research Grant LLS7015, and the American

Lebanese Syrian Associated Charities (ALSAC) of St Jude Children’s

Research Hospital.

Received: June 21, 2012

Revised: September 5, 2012

Accepted: October 17, 2012

Published: November 12, 2012

REFERENCES

Argiropoulos, B., and Humphries, R.K. (2007). Hox genes in hematopoiesis

and leukemogenesis. Oncogene 26, 6766–6776.
Can
Athale, U.H., Razzouk, B.I., Raimondi, S.C., Tong, X., Behm, F.G., Head, D.R.,

Srivastava, D.K., Rubnitz, J.E., Bowman, L., Pui, C.H., andRibeiro, R.C. (2001).

Biology and outcome of childhood acute megakaryoblastic leukemia: a single

institution’s experience. Blood 97, 3727–3732.

Attanasio, M., Uhlenhaut, N.H., Sousa, V.H., O’Toole, J.F., Otto, E., Anlag, K.,

Klugmann, C., Treier, A.C., Helou, J., Sayer, J.A., et al. (2007). Loss of GLIS2

causes nephronophthisis in humans and mice by increased apoptosis and

fibrosis. Nat. Genet. 39, 1018–1024.

Barakat, M.T., Humke, E.W., and Scott, M.P. (2010). Learning from Jekyll to

control Hyde: Hedgehog signaling in development and cancer. Trends Mol.

Med. 16, 337–348.

Barnard, D.R., Alonzo, T.A., Gerbing, R.B., Lange, B., and Woods, W.G.;

Children’s Oncology Group. (2007). Comparison of childhoodmyelodysplastic

syndrome, AML FAB M6 or M7, CCG 2891: report from the Children’s

Oncology Group. Pediatr. Blood Cancer 49, 17–22.

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim,

S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer

Cell Line Encyclopedia enables predictive modelling of anticancer drug sensi-

tivity. Nature 483, 603–607.

Bhardwaj, G., Murdoch, B., Wu, D., Baker, D.P., Williams, K.P., Chadwick, K.,

Ling, L.E., Karanu, F.N., and Bhatia, M. (2001). Sonic hedgehog induces the

proliferation of primitive human hematopoietic cells via BMP regulation. Nat.

Immunol. 2, 172–180.

Bhatia, M., Bonnet, D., Wu, D., Murdoch, B.,Wrana, J., Gallacher, L., and Dick,

J.E. (1999). Bone morphogenetic proteins regulate the developmental pro-

gram of human hematopoietic stem cells. J. Exp. Med. 189, 1139–1148.

Bischof, J., Maeda, R.K., Hediger, M., Karch, F., and Basler, K. (2007). An opti-

mized transgenesis system for Drosophila using germ-line-specific phiC31 in-

tegrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317.

Buijs, A., van Rompaey, L., Molijn, A.C., Davis, J.N., Vertegaal, A.C., Potter,

M.D., Adams, C., van Baal, S., Zwarthoff, E.C., Roussel, M.F., and Grosveld,

G.C. (2000). The MN1-TEL fusion protein, encoded by the translocation

(12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transform-

ing activity. Mol. Cell. Biol. 20, 9281–9293.

Carroll, A., Civin, C., Schneider, N., Dahl, G., Pappo, A., Bowman, P., Emami,

A., Gross, S., Alvarado, C., Phillips, C., et al. (1991). The t(1;22) (p13;q13) is

nonrandom and restricted to infants with acute megakaryoblastic leukemia:

a Pediatric Oncology Group Study. Blood 78, 748–752.

Carroll, C.E., Marada, S., Stewart, D.P., Ouyang, J.X., and Ogden, S.K. (2012).

The extracellular loops of Smoothened play a regulatory role in control of

Hedgehog pathway activation. Development 139, 612–621.

Chyla, B.J., Moreno-Miralles, I., Steapleton, M.A., Thompson, M.A., Bhaskara,

S., Engel, M., and Hiebert, S.W. (2008). Deletion of Mtg16, a target of t(16;21),

alters hematopoietic progenitor cell proliferation and lineage allocation. Mol.

Cell. Biol. 28, 6234–6247.

Creutzig, U., Reinhardt, D., Diekamp, S., Dworzak, M., Stary, J., and

Zimmermann, M. (2005). AML patients with Down syndrome have a high

cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 19,

1355–1360.

Dahn, R.D., and Fallon, J.F. (2000). Interdigital regulation of digit identity

and homeotic transformation by modulated BMP signaling. Science 289,

438–441.

Downing, J.R., Wilson, R.K., Zhang, J., Mardis, E.R., Pui, C.-H., Ding, L., Ley,

T.J., and Evans, W.E. (2012). The Pediatric Cancer Genome Project. Nat.

Genet. 44, 619–622.

Fuchs, O., Simakova, O., Klener, P., Cmejlova, J., Zivny, J., Zavadil, J., and

Stopka, T. (2002). Inhibition of Smad5 in human hematopoietic progenitors

blocks erythroid differentiation induced by BMP4. Blood Cells Mol. Dis. 28,

221–233.

Gamou, T., Kitamura, E., Hosoda, F., Shimizu, K., Shinohara, K., Hayashi, Y.,

Nagase, T., Yokoyama, Y., and Ohki, M. (1998). The partner gene of AML1 in

t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family.

Blood 91, 4028–4037.
cer Cell 22, 683–697, November 13, 2012 ª2012 Elsevier Inc. 695

http://www.tszelisa.com
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.1016/j.ccr.2012.10.007


Cancer Cell

CBFA2T3-GLIS2 Defines an Aggressive Type of AMKL
Grieder, N.C., Morata, G., Affolter, M., and Gehring, W.J. (2009). Spalt

major controls the development of the notum and of wing hinge primordia

of the Drosophila melanogaster wing imaginal disc. Dev. Biol. 329,

315–326.

Heuser, M., Yun, H., Berg, T., Yung, E., Argiropoulos, B., Kuchenbauer, F.,

Park, G., Hamwi, I., Palmqvist, L., Lai, C.K., et al. (2011). Cell of origin in

AML: susceptibility to MN1-induced transformation is regulated by the

MEIS1/AbdB-like HOX protein complex. Cancer Cell 20, 39–52.

Higuchi, M., O’Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E.J., and Downing,

J.R. (2002). Expression of a conditional AML1-ETO oncogene bypasses

embryonic lethality and establishes a murine model of human t(8;21) acute

myeloid leukemia. Cancer Cell 1, 63–74.

Hui, C.C., and Angers, S. (2011). Gli proteins in development and disease.

Annu. Rev. Cell Dev. Biol. 27, 513–537.

Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y.,

Scherer, S.W., and Lee, C. (2004). Detection of large-scale variation in the

human genome. Nat. Genet. 36, 949–951.

Ingham, P.W., and McMahon, A.P. (2001). Hedgehog signaling in animal

development: paradigms and principles. Genes Dev. 15, 3059–3087.

Jeanpierre, S., Nicolini, F.E., Kaniewski, B., Dumontet, C., Rimokh, R.,

Puisieux, A., and Maguer-Satta, V. (2008). BMP4 regulation of human mega-

karyocytic differentiation is involved in thrombopoietin signaling. Blood 112,

3154–3163.

Kawada, H., Ito, T., Pharr, P.N., Spyropoulos, D.D., Watson, D.K., and Ogawa,

M. (2001). Defective megakaryopoiesis and abnormal erythroid development

in Fli-1 gene-targeted mice. Int. J. Hematol. 73, 463–468.

Kim, Y.S., Kang, H.S., and Jetten, A.M. (2007). The Krüppel-like zinc finger
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